146. LRU Cache

146. LRU Cache

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.

Implement the LRUCache class:

LRUCache(int capacity) Initialize the LRU cache with positive size capacity.
int get(int key) Return the value of the key if the key exists, otherwise return -1.
void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair
to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key.
The functions get and put must each run in O(1) average time complexity.



Example 1:

Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]

Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1); // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2); // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1); // return -1 (not found)
lRUCache.get(3); // return 3
lRUCache.get(4); // return 4


Constraints:

1 <= capacity <= 3000
0 <= key <= 104
0 <= value <= 105
At most 2 * 105 calls will be made to get and put.

难度 : Medium

思路

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
class LRUCache {

class Node{

int key;

int value;

Node prev;

Node next;

public Node(int key, int value) {

this.key = key;

this.value = value;

}

public Node(){



}

}



Map<Integer,Node> map;

Node head;

Node tail;

int capacity;



public LRUCache(int capacity) {

this.map = new HashMap<>();

this.capacity = capacity;

this.head = new Node();

this.tail = new Node();

head.next = tail;

tail.prev = head;

}



public int get(int key) {

if (map.containsKey(key)) {

Node node = map.get(key);

touch(node);

return node.value;

} else {

return -1;

}

}





private void touch(Node node) {

remove(node);

addToHead(node);

}





private void remove(Node node) {

Node prev = node.prev;

Node next = node.next;

prev.next = next;

next.prev = prev;

}



private void addToHead(Node node) {

Node next = head.next;

node.next = next;

next.prev = node;

head.next = node;

node.prev = head;

}



public void put(int key, int value) {

if (map.containsKey(key)) {

Node node = map.get(key);

node.value = value;

touch(node);

map.put(key, node);

} else {

if (capacity == map.size()) {

//remove last

Node last = tail.prev;

map.remove(last.key);

remove(last);

}

Node node = new Node(key, value);

addToHead(node);

map.put(key, node);

}

}

}